Lesson 1. Introduction and the Shortest Path Problem

1 Goals for this course

- A course in operations research: the discipline of applying advanced mathematical methods to help make better decisions
- Formulate mathematical models for real-world decision-making problems:
- The shortest path problem
- Dynamic programming - deterministic and stochastic
- Use computational tools to solve these models with medium-to-large scale data
- Python and its many data science packages (e.g. pandas, networkx)
- Focus on
\diamond setting up models with the help of design patterns
\diamond analyzing and interpreting solutions
- Analyze and interpret solutions to these models

Problem statement and data

Mathematical model

- Detailed topic list and schedule on the syllabus

2 This lesson...

- What is the shortest way to get from Point A to Point B?

3 Graphs and networks

- Graphs model how various entities are connected
- A directed graph (also known as a digraph) (N, E) consists of
- set of nodes N (also known as vertices)
- set of edges E (also known as arcs)
\diamond edges are directed from one node to another
\diamond edge from node i to node j is denoted by (i, j)

Example 1.

4 Graphs are everywhere

- Physical networks - e.g. road networks
- Abstract networks - e.g. organizational charts
- Others?

5 Paths

- A path is a sequence of edges connecting two specified nodes in a graph:
- Each edge must have exactly one node in common with its predecessor in the sequence
- Edges must be passed in the forward direction
- No node may be visited more than once

Example 2. Give some examples of paths from node 1 to node 4 in the network in Example 1.

6 The shortest path problem

The shortest path problem

- Data:
- Digraph (N, E)
- Source node $s \in N$ and sink node $t \in N(s \neq t)$
- Each edge (i, j) in E has a length $c_{i j}$
- The length of a path is the sum of the lengths of the edges in the path
- Problem: What is the shortest path from s to t ?

Example 3. Consider the digraph below. The labels next to each edge represent that edge's length. What is the shortest path from node 1 to node 6?

- Natural applications of the shortest path problem:
- Transportation (road networks, air networks)
- Telecommunications (computer networks)
- Our focus: not-so-obvious applications of the shortest path problem
- In order to formulate a problem as a shortest path problem, we must specify:
(i) a digraph (nodes and edges)
(ii) a source and target node
(iii) the length of each edge
(iv) how any path from the source to the target translates into a solution to the problem

Example 4. You have just purchased a new car for $\$ 22,000$. The cost of maintaining a car during a year depends on its age at the beginning of the year:

Age of car (years)	0	1	2	3	4
Annual maintenance cost (\$)	2,000	3,000	4,000	8,000	12,000

To avoid the high maintenance costs associated with an older car, you may trade in your car and purchase a new car. The price you receive on a trade-in depends on the age of the car at the time of the trade-in:

Age of car (years)	1	2	3	4	5
Trade-in price (\$)	15,000	12,000	9,000	5,000	2,000

For now, assume that at any time, it costs $\$ 22,000$ to purchase a new car. Your goal is to minimize the net cost (purchasing costs + maintenance costs - money received in trade-ins) incurred over the next five years. Formulate your problem as a shortest path problem.

Example 5. The Simplexville College campus shuttle bus begins running at 7:00pm and continues until 2:00am. Several drivers will be used, but only one should be on duty at any time. If a shift starts at or before $9: 00 \mathrm{pm}$, a regular driver can be obtained for a 4 -hour shift at a cost of $\$ 50$. Otherwise, part-time drivers need to be used. Several part-time drivers can work 3-hours shifts at $\$ 40$, and the rest are limited to 2 -hour shifts at $\$ 30$. The college's goal is to schedule drivers in a way that minimizes the total cost of staffing the shuttle bus. Formulate this problem as a shortest path problem.

